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ABSTRACT

In this paper we propose an approach to identify sulci from

sulcal pieces. Our method is founded on the sulci localiza-

tion, feature-based shapes and their local organization. The

position data enable the devising of an easy handled 3D prob-

abilistic atlas using SPAM models. Shapes and local sulci

scheme are recognized thanks to SVR models (a regression

version of Support Vector Machine). All these aformentioned

aspects are merged into a unified markovian framework,

which favours locally the most reliable information. The first

model is used to strongly constrain label coverage over space

and the second to reach coherence within sulci neighbour-

hood. The mixture outperforms both models taking the best

of their local performances.

Index Terms— cortical folds labeling, sulci, SPAM,

SVR, Hidden Markov Field

1. INTRODUCTION

Brain cortex surface draws complex folds patterns known as

sulci, related to a mixture of genetic and developmental ra-

tionales, mechanical and connectivity constraints. Moreover,

we do not really know the extent of the connections between

cortical areas defined by sulci and functional activity. Espe-

cially, understanding the folding process can help to reduce

inter-individual variability in functional studies, or study the

links between abnormal brain developpement and psychiatric

pathologies. Some preliminary studies on cortex asymmetry

and sex retrieval [1] use a recognition system from our previ-

ous works [2].

Anatomists attempt to find steady patterns among sulci

variability. It leads to some consensus about large structures

which can be divided in primary, secondary and tertiary sulci

according to their appearance order during brain develop-

ment. Then, the earlier a sulcus appears, the lower is the

variability within population. In this study, we consider sulci

labels based on the sulcal roots theory [3] founded on Régis

works, but other nomenclatures exist for unsteady structures.

This theory predicts that several patterns could coexist within

the same class according to sulcal roots prefered orientation

leading to broken or connected sulcus [4]. This emphasizes

the complexity of defining a shape model.

Some authors focus on shape-based recognition through

the definition of sketched sulci : sulcal lines [5] [6] neglect-

ing branches or breaks, sulcal ribbons [7] without branches

but with breaks, sulcal pieces [2] [8] [9], surfaced sulcal

pieces [10]. Others concentrate on localized features along

the cortex surface [11] [10] [12] or over MRI voxel space

[13]. Sometimes interaction between sulci are considered

through markovian assumptions [2] [11]. Position or shape

information is sufficient to recognize primary sulci (most

authors consider often about 10 sulci [10] [13] [5] [7]), but

both information is required for secondary or tertiary sulci

(studied by [11] [12] [2] through 40 to 60 sulci). Thus, in the

following, we propose a refinement of our previous recogni-

tion system with the addition of a model of the localization of

sulci. This Bayesian model is quite close to the ones in [8] [7]

but combined into the markovian framework of our previous

works.

2. METHODS

Labeling of sulci consists in assigning one label li to each

sulcal elementary piece Li (most of the time we confuse li and

Li to lighten notations). Inference of a labeling L from data

D and priors can be understood into this general Bayesian

formulation :

P (Labeling|Data) = P (L|D) ∝ P (D|L)P (L)

Two related standard Bayesian risks can express the worth

of errors :

• MAP (Maximum a posteriori) : each erroneous global

labeling has the same cost.

L∗
MAP = arg max

L
P (L|D)

• MPM (Marginal Posterior Mode [14]) : each local er-

ror has the same cost. It adds a gradient to the preceding

Bayesian risk.
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Fig. 1. (a) : SPAM results from counting sulci over voxels,

filtering it with gaussian blur and normalizing the result to

yield a 3D probability map. Above, we display several central

sulci and the resulting SPAM. (b) lateral and medial views of

SPAM of 60 coloured sulci. (a-b) : SPAM are represented

here by 3 surfaces with various levels of transparency based

on a thresholding of the probability map preserving 30, 60

and 80 percent of the distribution core.

L∗
MPM = {L∗

i }i∈L =

{
arg max

Li

P (Li|D)

}
i∈L

with Li the labeling of one sulcus piece and L the set of all

sulcus pieces.

Without any additional hypothesis, MAP can be opti-

mized by simulated annealing coupled with Gibbs sampling

to approach global energy minimum or by ICM (Iterated

Conditional Mode) to only reach the nearest local energy

minimum. MPM criterion is assessed by a Markov Chain

Monte Carlo (MCMC) method which boils down to a Gibbs

sampling over labels on each sulcal piece of which the most

frequent label is taken.

In this context, we present three models : the first one

is based only on localization information, the second one on

shapes and organization of sulci, the last one is a combination

of both.

2.1. Localization model : SPAM

Sulci are rather well localized so we try to take advantage

of this assumption through SPAM (Statistical Probabilistic

Anatomy Map [15]) models which provides voxelwise prob-

abilities. To see SPAM in the context of modeling sulci, the

reader is referred to [8]. Here, D={Di}i∈L represents localiza-

tions of each sulcus piece Li (see figure 1).

Under conditional independency assumptions between

local sulci model we can derive a naive Bayesian classifier

(MPM and MAP are equivalent here):

L∗
SPAM = {L∗

i }i∈L =

{
arg max

Li

P(Di|Li=li) P(Li=li)
P

lj
P(Di|Li=lj) P(Li=lj)

}
i∈L

with {li} is the set of enabled labels for each sulcal piece.

Above, the normalization term (the denominator) is

tractable so posterior probabilities can be obtained. Each

sulcal piece likelihood P (Di|Li) is computed according to sta-

tistical independence assumptions between each of its voxels.

Finally mean log-likelihood is rather used to erase the influ-

ence of voxels number. P (L) is our prior on labeling. For this

localization model and the full one, we take a simple measure

of labels frequencies over sulcal pieces.

2.2. Shapes and local organization of sulci : SVR

In our previous works [2], we introduced a sulci recognition

system based on high level percepts : features describing mor-

phological and topological properties of cortical folds. Based

on dedicated local experts, each sulcus shape is learned apart

from others and local sulci arrangement is learned from pairs

of sulci. These models are embeded as clique potentials in

a global markovian framework where we supposed only lo-

cal interactions was governing sulcal organization. MAP or

MPM probability inferences under markovian dependencies

rather focus on the associated Gibbs energy E(L) because only

local energy differences between involved states are needed.

It is expressed over clique potentials ψc based on sulci and

pairs of sulci as below :

P (L|D) =
P (D,L)

P (D) = e−E(L)
P (D)

E(L) = −log
(
P (D,L)

)
= −log

(∏
c∈C

P (DcLc)

)
=

P

c∈C
ψc(Dc,Lc)

with P (D) the normalization constant which is independent of

the labeling.

In this paper, we substitute our former potential models

(Multi Layer Perceptrons) for SVR (Support Vector Re-

gression) in order to avoid fastidious definition of neural

network topology, black box approach that prevents good

interpretability. Finally, it improves versatility which allows

easy future additions or redefinings of data features. Further-

more, large band model like SVR are more constrained and

better suited in large dimension problems.

2.3. Mixture : SPAM + SVR

Several approaches can be expressed to mix the two preceding

models and study the influence of spatial information. The

simplest and fastest one is to use the SPAM model to ini-

tialize a labeling and fall into the first local minimum of the

optimized MAP criterion with ICM.
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Results show that many local SPAM posterior probabili-

ties of labels are almost zero. In our previous works we lo-

cally limit the size of the state space (the set of enabled la-

beling) thanks to a coarse modelisation of each sulcus local-

ization (each label is restrained within a bounding box [2]).

SPAM are more accurate and restrictive, so we can use them

to spatially constrain labels presence. Only labels with a pos-

terior probability over a really low threshold (0.01 in our ex-

periments) are preserved. The same can be derived for MPM

or MAP with Gibbs sampling at low temperature. These ap-

proaches assume that the initialization is really good, close

to the optimal answer and only slight local changes are still

needed.

Under sensible independence assumptions between each

kind of information (localization, shape, local organization),

we rewrite D={Dp}{Ds}{Dst} over sulcal pieces, sulci and sul-

cal pairs. Thus, a better sharp coupling integrates each model

into one probability (MAP below).

P (D|L) =

∏
i ∈ sulcal

pieces

P (Di|Li)

∏
s ∈ sulci

P (Ds|Ls)

∏
s t ∈ sulcal

pairs

P (Dst|Lst)

where Li is the label of sulcal piece i, Ls is the set of sulcal

pieces of sulcus s, Lst is the set of sulcal pieces of sulci s and

t.
We know that none of the models is reliable or steady

enough. In fact some sulci are really well localized, others

have a well defined shape. This kind of information should

be balanced to favour those which can be believed. We sug-

gest that each likelihood P (Di|Li) is flattened in accordance

with error rates ei measured on an unused learning database.

3. RESULTS AND DISCUSSION

We used in our experiments the same database (identical la-

beling and segmentation) as in [2]. It is composed of 26 man-

ually labeled Right brains from healthy subjects : 21 are used

to train our system (16 to learn local models and 5 to rate

each model to enhance reliable models influence in the global

optimized energy) and 5 to evaluate its generalization ability.

All brains are transformed using rigid registration into the Ta-

lairach coordinates system and scaled to reduce global size

variability.

SPAM-based model 2.1 is really fast to learn and gives

better recognition rates than our previous model on healthy

subjects. But for human experts some errors are intolerable,

so their assessment may not match recognition rates. So, seri-

ous errors (huge sulci parts missing, double outlines) happen

even on quite stable sulci (central sulcus for instance when

localization is ambiguous or deviant from the learned model)

and furthermore we notice a great sensitivity to segmentation

errors.

Thus high level information remains required, even

though error rates of our SVR-based model 2.2 are higher.

(a) localization model (b) shape and organization model

Fig. 2. Color mapping of average sulcuswise error dif-

ferences of single models (localization model SPAM (a)

and shape+organization model SVR (b)) versus full model

(SPAM + SVR) on an arbitrary subject. Values range from

−21% (yellow) to +21% (green) with white color for null

value. Green and blue values show an improvement of the

mixture model against the single ones, read and yellow for

the opposite.

Indeed, its labeling generates more consistent sulcal shapes

and patterns, that is the reason why both models are valuable.

Several combinations are of interest (see 2.3) and all give

promising results (see table 1). Improvements supplied by

our best model are highlighted in figure 2 with respect to the

SPAM model 2.1.

Sulcuswise error rates (figure 2) penalize each wrong-

labeled sulcal piece, involving the considered sulcus, in rela-

tion to its size (see [2]). Each extra or missing sulcal piece

is considered, thus the displacement of a sulcus is taken into

account twice. Two global errors have been derived from

local ones. For ’mass error’, size weights are relative to the

sum of all sizes (large sulci have more importance), whereas

for ’mean error’, size weights are only normalized by the sum

of local sulcal pieces involved in its computing (each sulcus

has the same weight but small sulcal pieces are less influent

than greater ones). The second error rates help thus to focus

on small sulci and highlights some enhancements (see Table

1).

4. CONCLUSION AND PERSPECTIVES

Brain anatomy outlines complex patterns that we can not

claim to learn only by localized information. However, atlas-

based approaches offer some coarse insights that we can not

afford to omit. These local models are often elementary

and offer easy ways to represent, compare and explain data.

Indeed, SPAM priors give some useful information about lo-

calization and shape tendencies. So, it helps to refine spatial

labels restriction in the limit of sulci localization variability,

but allow ever some local adjustements to take into account
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Single Models Models Mixture

SPAM SVR + Gibbs
SPAM init

SVR + ICM

SPAM init

SVR + MPM

SPAM potential

SVR + Gibbs

mass error
train 10.33 19.81 11.39 14.18 9.90

test 21.42 26.70 21.76 20.46 19.14

mean error
train 21.82 32.12 22.09 27.11 19.17

test 43.08 44.72 41.71 39.46 38.04

Table 1. Error rates on train and test databases for several models. From left to right, separated models : SPAM only (2.1), SVR

only (2.2), models mixture. ”SPAM init” means : initialization and pruning based on SPAM model. ”SPAM potential” means

a full coupling through the markov field between both isolated models. ”SVR + mode” : here mode specifies the optimization

method used for labeling.

the shape of sulci. With such addition to our previous works,

we reduce combinatory of sulcus pieces a lot, ensure a re-

duction of the number of local minima, enhance recognition

rates and speed-up the computing. So, we demonstrate that

a combination of localization, shape and local organization

models is able to manage well cortical folds.

Now, deepest analyses of errors are needed in regard to

additional data so as to understand which information is cur-

rently missing in the model or underexploited (sulcal roots,

steady sulci organization patterns...). Especially, we already

consider alternative shape models to provide better descrip-

tion of sulci based on SPAM definition from local coordinate

systems. In addition, extracting relevant information from the

existing recognition system is worthwhile to make the mod-

els simpler and locally focus on features of matter. We now

intend to evolve our recognition system incorporating func-

tional (position of activation) or diffusion (white fibers) data

to improve our comprehension of brain organisation through

their existing links, each modality providing clues to better

understand the others.
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